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The influence of carrier density on magnetism in a zigzag graphene nanoribbon is studied in a �-orbital
Hubbard-model mean-field approximation. Departures from half filling alter the magnetism, leading to states
with charge-density variation across the ribbon and parallel spin alignment on opposite edges. Finite carrier
densities cause the spin density near the edges to decrease steadily, leading eventually to the absence of
magnetism. At low doping densities the system shows a tendency to multiferroic order in which edge charges
and spins are simultaneously polarized.
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I. INTRODUCTION

Graphene sheets and related carbon-based nanomaterials
have attracted attention recently after seminal experiments1,2

revealed novel physics related to their unique electronic
structure.3 In graphene nanoribbons4–24 lateral confinement
leads to size quantization and to one-dimensional �1D� con-
duction channels whose properties depend qualitatively on
edge termination character. Neutral zigzag-terminated rib-
bons have attracted particular attention because they have a
flatband, perfectly flat in simple �-band models, pinned to
the Fermi level. In self-consistent field �SCF� theories, in-
cluding ab initio spin-density-functional theories �DFTs�, the
flatband leads to robust magnetic order. Ferromagnetic �F�
alignment of spins at the zigzag edges is predicted also in
treatments going beyond mean field.7,8 Although the reliabil-
ity of SCF theories is uncertain and not yet tested experimen-
tally, interest in zigzag-edge magnetism has remained strong
because of potential for interesting applications in
nanoelectronics.18

Most studies of the electronic structure of zigzag-
terminated graphene ribbons have focused on properties of
the neutral system or systems with substitutional doping.25

We study the role of gate voltage induced changes in carrier
density, i.e., gate doping. A related work in the low-carrier
doping regime with an additional neutralizing background
charge explored the possibility of stable noncollinear �NC�
magnetic states.26 In neutral systems, SCF theories predict
edge magnetization in graphene nanoribbons with opposite
spin polarizations on opposite edges.4,9,15 In theoretical stud-
ies of locally gated zigzag-ribbon junctions usually the non-
interacting electronic structure is assumed,27–33 neglecting
the possibility of doping-dependent interaction-driven rear-
rangements. In this work we show that gate doping leads to
changes in charge distribution, spin configuration, and total
net spin polarization, which are accompanied by important
modifications in electronic structure.

Our study is based on the �-orbital Hubbard-model SCF
theory for the magnetic properties of graphene
nanostructures,17,34–36 in which an electron of spin � in site i
experiences a repulsive interaction proportional to the den-
sity of opposite-spin electrons ni�̄. The Hubbard-model SCF
theory is broadly consistent with DFT calculations when the
interaction parameter U is chosen appropriately. The

�-orbital Hartree-Fock theory reduces to the Hubbard model
when only the on-site Coulomb interactions are retained. We
have chosen to use a Hubbard interaction parameter
U=2 eV which reproduces in the undoped case the band
gaps obtained by microscopic density-functional theory in
the local-density approximation �LDA�. This value is smaller
than other estimates34 but has been adopted with a similar
motivation in some other recent work.17

The Hubbard-model mean-field Hamiltonian for each spin
� is

H� = − �0�
�i,j�

ci�
† cj� + U�

i

ni�̄ni�ci�
† ci� + vext�

i

ci�
† ci�

consist of a nearest-neighbor tight-binding term with hop-
ping �0=2.6 eV connecting lattice sites i and j, the Hubbard
term representing electron-electron interactions, and an ex-
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FIG. 1. �Color online� Hubbard-model SCF-theory phase dia-
gram as a function of doping per length �n �defined in the text� and
ribbon width W for nearest-neighbor hopping �0=2.6 eV. The on-
site repulsion strength was chosen to have a value U=2 eV which
reproduce the ribbon band gaps obtained in the LDA-DFT calcula-
tions in Ref. 17. We used 1200 k points for Brillouin-zone sam-
pling. The energetic preference for opposite spins �AF� on opposite
edges is replaced by a preference for parallel F spins at larger dop-
ing. Above a critical doping �n�0.7 the SCF calculation does not
find magnetic states. Solutions at finite doping sometimes �AFb and
Fb� break the inversion symmetry of the ribbon. When NC is al-
lowed canted spin solutions midway between AF and F configura-
tion become energetically favored at low doping.
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ternal potential term accounting for the interaction with the
constant positive background charge proportional to a coef-
ficient we choose to be vext=−U. Given the uncertainty of
predictions implied by particular versions of SCF theory, the
advantages of this relatively simple model often outweigh
disadvantages. Because the magnetism in zigzag ribbons is
essentially one dimensional, we measure doping �n in units
of the number of excess electrons per repeat distance
a=2.46 Å along the edge. The corresponding areal density
�n2D=�n /W, where the ribbon width W=�3Na /2 and N is
the number of atom pairs per ribbon unit cell.

II. SCF SOLUTIONS AT FINITE DOPING

The main players in zigzag-edge magnetism are the flat-
band states which occupy one-third of the one-dimensional
ribbon Brillouin zone �BZ� and are localized11 near the rib-
bon edges, most strongly so near the BZ boundary
�k��� /a. In the undoped SCF ground state, electrons of op-
posite spin are localized near opposite edges of the ribbon
and a gap19 ��W−1 separates occupied valence and empty
conduction-band ribbon states. By appealing to particle-hole
symmetry we can limit our discussion of doping to the
n-type case in which electrons start filling the conduction
band. The doping causes charge-density variation across the
ribbon and to a complicated competition between band and
interaction energies manifested by the variety of SCF equa-
tion solutions classified below. We label solutions as AF �op-
posite� or F �parallel� to indicate the relative alignment of
spins on opposite edges. The label NC is used indicate non-
collinear spin solutions. The label b is applied for solutions
which break inversion symmetry across the ribbon in a way
which will be explained in more detail later. Finally we use
the letter P to designate a paramagnetic state with no local
spin polarization. The phase diagram in Fig. 1 illustrates the
sequence of transitions AF→NC→F→Fb→P in narrower
ribbons. In wider ribbons we find an additional AF state re-
gion between the F and Fb regimes.

The total energy per unit cell consist of a sum over all the
occupied single-particle eigenvalues 	km� labeled with k and
m the band index divided by NK the total number of k points
minus a term to account for the double-counting correction
in the interaction

E =
1

NK
�
km�

occ

	km� −
U

2 �
i�

ni�
localni�̄

local,

where the occupations ni�
local are evaluated in the local frame

at lattice site i where spin is diagonal. Their differences be-
tween different self-consistent solutions are shown in Fig. 2
for a particular �N=8� ribbon width when only collinear spin
solutions are considered. In the collinear scheme the energy
associated with breaking inversion symmetry across the rib-
bons is always small and the main trend is a crossover from
antiferromagnetic �AF� solutions at small �n to ferromag-
netic solutions for �n
0.04 to nonmagnetic solutions for
�n
0.4. For the F-type solutions and those with broken
charge symmetry the system has a nonzero net spin polariza-
tion as a function of doping density. The doping dependence

of spin polarization is illustrated for the same N=8 ribbon
width in Fig. 3. Each of the solution types identified in Fig. 1
is associated with particular electronic-structure features
which are illustrated in Fig. 4. For the AF solution, finite
doping requires that states above the interaction-induced gap
be occupied. For small doping electrons start occupying
states near the conduction-band minima. 	See Fig. 4.
 These
additional electrons suffer a large energy penalty due to the
neutral solution band gap and have lower energy when spin
polarized. The resulting half-metallic solution in the spin-
collinear scheme implies a nonzero overall spin polarization
in the system and is accompanied by a breaking of charge-
distribution symmetry around the ribbon center. This asym-
metric charge distribution is a combined effect of the net spin
polarization and the character of the AF solution at the neu-
trality point, in which electrons with opposite spin polariza-
tions are concentrated on opposite edges.19 If both up- and
down-spin bands were equally occupied there would be no
charge-distribution asymmetry around the ribbon center.
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FIG. 2. �Color online� Total energy differences per edge atom
between the AF �or AFb� and F, Fb, or P states as a function of
doping �n for a relatively narrow ribbon with N=8 atom pairs per
unit cell. For low doping AFb-type solutions with broken charge
symmetry are energetically favored over AF solutions although the
energy difference is very small. The NC spin solutions are lowest in
energy in the weakly doped regime.

Fb

F

AFb

δn

ζ

0.40.20

0.03

0.02

0.01

0

FIG. 3. �Color online� Net spin polarization obtained from the
total electron spin densities �= �n↑−n↓� / �n↑+n↓� for AFb, F, and Fb
solutions as a function of doping. AFb solutions collapse into AF
solutions with zero net spin polarization for high enough doping. F
and Fb configurations also progressively lose net spin polarization
as they approach the nonmagnetic P limit. The shaded region rep-
resents the doping regime where noncollinear solutions are favored
energetically.
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In the low doping regime a noncollinear spin order that
continuously bridges the intermediate situation between the
neutral AF configuration and mostly F configuration at
higher doping is26 a possibility. In the version of the
Hubbard-model mean-field theory which allows for noncol-
linear spin densities we must allow for the possibility that the
average spin polarization on different lattice sites points in
different directions.37 This allows a larger variational space
within a single Slater-determinant approximation and can po-
tentially lead to lower-energy solutions but the spin label
becomes undefined for each single-particle wave function.
We verified that noncollinear spin solutions are favored
energetically26 in the Hubbard-model calculations for low
doping region and that the transition to F configuration hap-
pens at doping densities typically about 20% higher than
when only collinear solutions are considered. The angle be-
tween the spin densities on opposite edges and the band
structure of the noncollinear state are represented in Fig. 5.

In the intermediate doping regime the total energy is mini-
mized by solutions which are more similar to the F neutral-
ribbon configuration19 which do not have an energy gap and
are therefore favored by doping. This transition to F-type
solutions occurs already at a relatively small value of doping
�n�0.06. The states that are occupied first at finite doping
are those near the valley points �k�=2� /3a that are19 spread
across the ribbon and therefore control the exchange cou-
pling between opposite edges. The W-scaling rules of the
energy bands near the valley points19 are consistent with the

W−1 decay law of the threshold doping at which the transi-
tion to F-type transition occurs in our numerical phase dia-
gram. In electronic structures with dominantly F character
the charge-distribution symmetry around the ribbon center is
preserved. In this case every occupied states, up- or down-
spin and valence- or conduction-edge band, have a symmet-
ric distribution of electron density around the ribbon center.
When the doping is sufficiently large, however, we find a
broken charge-symmetry solution that we label as Fb. In this
state one of the occupied conduction bands has AF �unbal-
anced across the ribbon� rather than F �balanced across the
ribbon� character. In addition to these solutions, we find that
for wide ribbons there is an intermediate doping region in
which AF solutions have lower total energy than the F solu-
tions before the Fb solution is stabilized. The difference in
energy between different magnetic solutions is small at inter-
mediate and large doping.

In the high doping regime the magnetic features of the
system progressively disappear as the edge-state bands
become filled. The ribbon is found to turn paramagnetic
above a critical value that increases with the ribbon
width and saturates around �nc�0.7. Considering that
edge-localized states in the conduction bands with k points
near 2� /3a� �k��� /a span approximately 1/3 of the whole
Brillouin zone we find that the total amount of doping elec-
trons required to fill completely the edge for both up and
down spins is 2/3, an amount that can be surpassed near the
mentioned doping saturation limit.
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FIG. 4. �Color online� Upper row. Band structures corresponding to AFb, AF, F, Fb, and P spin collinear solutions of the Hubbard-model
SCF equations for a zigzag nanoribbon with N=8 atom pairs in the unit cell. At finite doping the energy gain due to the gap present in the
AFb and AF solutions is reduced favoring the F solution which does not have a gap. Lower row. Up- and down-spin electron occupation per
lattice site in the unit cell across the ribbon. The AFb configuration has broken charge-distribution symmetry relative to the ribbon center due
to an unequal occupation of up- and down-spin bands. All mean-field bands are invariant under k→−k. We show only the portion of the 1D
BZ with states close to the Fermi level.
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III. DISCUSSION

The AF state of zigzag nanoribbons has the unusual fea-
ture that inversion symmetry across the ribbon is broken in
opposite senses in the two spin subsystems.17,19 Our calcula-
tion suggests that in low doping regime the system can easily
develop solutions with a charge density that is distributed
asymmetrically across the ribbon, creating an interesting and
unusually strong type of multiferroic behavior17,38 in which
spin polarization and charge density are coupled. We expect
that transport properties can correspondingly be manipulated
in interesting interrelated ways by both external magnetic
fields and external electric fields directed across the ribbon.
Edge transport should be strongly suppressed, for example,
when a transverse electric field is applied which has opposite
orientations on opposite ends of a ribbon.

Above a certain critical doping density, which is inversely
proportional to the ribbon width W−1, we find that the system
undergoes a transition to a F configuration in which opposite

edges have parallel spin polarizations. When doping is in-
creased further the spin configuration is altered yet again,
restoring inversion symmetry breaking across the ribbon. In
this high doping regime the total magnetic condensation en-
ergy is small and the energy differences between different
magnetic configurations are small. Eventually at sufficiently
high doping the Hubbard-model SCF equations have only
paramagnetic solutions.

The SiO2 substrates on which exfoliated graphene
samples are usually prepared have electron-density
inhomogeneities39 of the order of nfluc�1011 cm−2 that can
extend over lengths of the order of L�1 m. In the limiting
case of ribbons with this same width as the puddle sizes a
rough estimate of doping per unit lattice constant a within
each puddle can be evaluated with the product of these two
quantities

�nfluc � Lnfluc � 0.25/a .

This amount of doping can influence the spin configurations
in the system and the presence of these random perturbations
is therefore expected to appreciably weaken the tendency
toward magnetic order, especially for wide ribbons. For this
reason we should expect better chances of detecting edge
magnetism in suspended ribbons which have much weaker
electron-density fluctuations.

The long-ranged character of the Coulomb interaction, ne-
glected in the present work, is expected to introduce impor-
tant changes in the details of electronic structure especially
in the regions in which states with different charge and spin
configurations compete closely. The discrepancies can be
more acute than in the neutral case because the inadequacy
of short-ranged screening can be more relevant when the
occupation of each lattice site in the unit cell becomes inho-
mogeneous as we depart from half filling. Nevertheless, it is
also likely that several qualitative features of the solutions
are still correctly captured by the Hubbard model and there-
fore can provide useful hints on the actual behavior of the
magnetic configurations in ribbons as a function of doping.
Even though fluctuation effects we have neglected may work
against the formation of long-range order in these 1D mag-
nets, the unusually stiff ferromagnetic alignment of the spins
predicted by mean-field theories for zigzag ribbons16 sug-
gests that magnetic order could be possible and should be
manifested in some way in experiments.

ACKNOWLEDGMENTS

We gratefully acknowledge helpful discussions with P. M.
Haney, T. Pereg-Barnea, K. T. Delaney, and P. Rinke. Finan-
cial support was received from the Welch Foundation, NRI-
SWAN, ARO, DOE, and the Spanish Ministry of Education
through the MEC-Fulbright program.

*jeil@physics.utexas.edu
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature �London� 438, 197 �2005�.

2 Y. Zhang, Yan-Wen Tan, Horst L. Stormer, and Philip Kim, Na-

ture �London� 438, 201 �2005�.
3 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 �2009�; A. K. Geim
and K. S. Novoselov, Nature Mater. 6, 183 �2007�; A. K. Geim
and A. H. MacDonald, Phys. Today 60 �8�, 35 �2007�.

nlocal
↓

nlocal
↑

E = 0

δn = 0.05

y (Å)
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FIG. 5. �Color online� In the weakly doped region canted spin
orientations develop in order to minimize the total energy when
noncollinear solutions are allowed. Upper row. Band structure and
spin-resolved electron occupation per lattice for a zigzag ribbon
with N=8 and �n=0.05. The occupation and spin polarization at
each lattice site are represented in a local frame where the spin is
diagonal. Lower row. Spin polarization and relative orientation of
the spin direction between different lattice sites represented with the
arrow heads.

J. JUNG AND A. H. MACDONALD PHYSICAL REVIEW B 79, 235433 �2009�

235433-4



4 M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J.
Phys. Soc. Jpn. 65, 1920 �1996�.

5 K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Phys. Rev. B 54, 17954 �1996�.

6 K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev.
B 59, 8271 �1999�.

7 T. Hikihara, X. Hu, H.-H. Lin, and C.-Y. Mou, Phys. Rev. B 68,
035432 �2003�.

8 S. Dutta, S. Lakshmi, and S. K. Pati, Phys. Rev. B 77, 073412
�2008�.

9 H. Lee, Y.-W. Son, N. Park, S. Han, and J. Yu, Phys. Rev. B 72,
174431 �2005�.

10 M. Ezawa, Phys. Rev. B 73, 045432 �2006�.
11 L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 �2006�.
12 K.-I. Sasaki, S. Murakami, and R. Saito, J. Phys. Soc. Jpn. 75,

074713 �2006�.
13 Y.-W. Son, M. L. Cohen, and Steven G. Louie, Phys. Rev. Lett.

97, 216803 �2006�.
14 Y.-W. Son and Marvin L. Cohen, and Steven G. Louie, Nature

�London� 444, 347 �2006�.
15 L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison, Phys.

Rev. B 75, 064418 �2007�.
16 O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209

�2008�.
17 J. Fernández-Rossier, Phys. Rev. B 77, 075430 �2008�.
18 W. Y. Kim and K. S. Kim, Nat. Nanotechnol. 3, 408 �2008�.
19 J. Jung, T. Pereg-Barnea, and A. H. MacDonald, Phys. Rev. Lett.

102, 227205 �2009�.
20 M. Y. Han, Barbaros Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev.

Lett. 98, 206805 �2007�.
21 X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319,

1229 �2008�.
22 S. S. Datta, D. R. Strachan, S. M. Khamis and A. T. C. Johnson,

Nano Lett. 8 1912 �2008�.
23 M. Zarea and N. Sandler, Phys. Rev. Lett. 99, 256804 �2007�.
24 M. Zarea, C. Busser, and N. Sandler, Phys. Rev. Lett. 101,

196804 �2008�.
25 B. Huang, Q. Yan, G. Zhou, J. Wu, F. Liu, B.-L. Gu, and W.

Duan, Appl. Phys. Lett. 91, 253122 �2007�; F. Cervantes-Sodi,
G. Csanyi, S. Piscanec, and A. C. Ferrari, Phys. Rev. B 77,
165427 �2008�; N. Gorjizadeh, A. A. Farajian, K. Esfarjani, and
Y. Kawazoe, ibid. 78, 155427 �2008�; S. S. Yu, W. T. Zheng, Q.
B. Wen, and Q. Jiang, Carbon 46, 537 �2008�; T. Wassmann, A.
P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, Phys. Rev.
Lett. 101, 096402 �2008�; S. Dutta and S. K. Pati, J. Phys.
Chem. B 112, 1333 �2008�; S. Dutta, A. K. Manna, and S. K.
Pati, Phys. Rev. Lett. 102, 096601 �2009�.

26 K. Sawada, F. Ishii, M. Saito, S. Okada, and T. Kawai, Nano
Lett. 9, 269 �2009�.

27 J. M. Kinder, J. J. Dorando, H. Wang, and G. K.-L. Chan, Nano
Lett. 9, 1980 �2009�.

28 A. Cresti, G. Grosso, and G. P. Parravicini, Phys. Rev. B 77,
233402 �2008�.

29 A. Cresti, G. Grosso, and G. P. Parravicini, Phys. Rev. B 78,
115433 �2008�.

30 J. Nakabayashi, D. Yamamoto, and S. Kurihara, Phys. Rev. Lett.
102, 066803 �2009�.

31 A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Nat. Phys. 3,
172 �2007�.

32 A. R. Akhmerov, J. H. Bardarson, A. Rycerz, and C. W. J.
Beenakker, Phys. Rev. B 77, 205416 �2008�.

33 K. Wakabayashi and T. Aoki, Int. J. Mod. Phys. B 16, 4897
�2002�.

34 O. V. Yazyev, Phys. Rev. Lett. 101, 037203 �2008�.
35 J. Fernández-Rossier and J. J. Palacios, Phys. Rev. Lett. 99,

177204 �2007�.
36 J. J. Palacios, J. Fernández-Rossier, and L. Brey, Phys. Rev. B

77, 195428 �2008�.
37 P. Haney, Doctoral thesis, Department of Physics, University of

Texas at Austin, 2007.
38 J. van den Brink and Daniel I Khomskii, J. Phys.: Condens.

Matter 20, 434217 �2008�; N. A. Spaldin and M. Fiebig, Science
309, 391 �2005�.

39 J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K.
von Klitzing, and A. Yacobi, Nat. Phys. 4, 144 �2008�.

CARRIER DENSITY AND MAGNETISM IN GRAPHENE… PHYSICAL REVIEW B 79, 235433 �2009�

235433-5


